Structural Stability of Turbulent Jets
نویسندگان
چکیده
Turbulence in fluids is commonly observed to coexist with relatively large spatial and temporal scale coherent jets. These jets may be steady, vacillate with a definite period, or be irregular. A comprehensive theory for this phenomenon is presented based on the mutual interaction between the coherent jet and the turbulent eddies. When a sufficient number of statistically independent realizations of the eddy field participate in organizing the jet a simplified asymptotic dynamics emerges with progression, as an order parameter such as the eddy forcing is increased, from a stable fixed point associated with a steady symmetric zonal jet through a pitchfork bifurcation to a stable asymmetric jet followed by a Hopf bifurcation to a stable limit cycle associated with a regularly vacillating jet and finally a transition to chaos. This underlying asymptotic dynamics emerges when a sufficient number of ensemble members is retained in the stochastic forcing of the jet but a qualitative different mean jet dynamics is found when a small number of ensemble members is retained as is appropriate for many physical systems. Example applications of this theory are presented including a model of midlatitude jet vacillation, emergence and maintenance of multiple jets in turbulent flow, a model of rapid reorganization of storm tracks as a threshold in radiative forcing is passed, and a model of the quasi-biennial oscillation. Because the statistically coupled wave–mean flow system discussed is generally globally stable this system also forms the basis for a comprehensive theory for equilibration of unstable jets in turbulent shear flow.
منابع مشابه
Heat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface
In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملA stochastic structural stability theory model of the drift wave–zonal flow system
A remarkable phenomenon in turbulent flows is the spontaneous emergence of coherent large spatial scale zonal jets. In this work a comprehensive theory for the interaction of jets with turbulence, stochastic structural stability theory, is applied to the problem of understanding the formation and maintenance of the zonal jets that are crucial for enhancing plasma confinement in fusion devices. ...
متن کاملNumerical Study of Interaction of Two Plane Parallel Jets
In the present work, a numerical simulation of two parallel turbulent jets was performed. The simulations were carried out by using the standard, the standard and the RSM models. A parametric study was also presented to determine the effect of the nozzles spacing and velocity ratio on the axial and transverse positions of the merge and combined points. Correlations between the various paramet...
متن کاملDrift wave-zonal flow dynamics
A remarkable phenomenon in turbulent flows is the spontaneous emergence of coherent large spatial scale zonal jets. Geophysical examples of this phenomenon include the Jovian banded winds and the Earth’s polar front jet. In this work a comprehensive theory for the interaction of jets with turbulence, Stochastic Structural Stability Theory, is applied to the problem of understanding the formatio...
متن کامل